Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Heliyon ; 9(3): e14029, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288593

ABSTRACT

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

2.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2122710

ABSTRACT

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

3.
Phytomed Plus ; 1(1): 100002, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1783689

ABSTRACT

Background: Containing COVID-19 is still a global challenge. It has affected the "normal" world by targeting its economy and health sector. The effect is shifting of focus of research from life threatening diseases like cancer. Thus, we need to develop a medical solution at the earliest. The purpose of this present work was to understand the efficacy of 22 rationally screened phytochemicals from Indian medicinal plants obtained from our previous work, following drug-likeness properties, against 6 non-structural-proteins (NSP) from SARS-CoV-2. Methods: 100 ns molecular dynamics simulations were performed, and relative binding free energies were computed by MM/PBSA. Further, principal component analysis, dynamic cross correlation and hydrogen bond occupancy were analyzed to characterize protein-ligand interactions. Biological pathway enrichment analysis was also carried out to elucidate the therapeutic targets of the phytochemicals in comparison to SARS-CoV-2. Results: The potential binding modes and favourable molecular interaction profile of 9 phytochemicals, majorly from Withania somnifera with lowest free binding energies, against the SARS-CoV-2 NSP targets were identified. It was understood that phytochemicals and 2 repurposed drugs with steroidal moieties in their chemical structures formed stable interactions with the NSPs. Additionally, human target pathway analysis for SARS-CoV-2 and phytochemicals showed that cytokine mediated pathway and phosphorylation pathways were with the most significant p-value. Conclusions: To summarize this work, we suggest a global approach of targeting multiple proteins of SARS-CoV-2 with phytochemicals as a natural alternative therapy for COVID-19. We also suggest that these phytochemicals need to be tested experimentally to confirm their efficacy.

4.
Phytomed Plus ; 2(2): 100252, 2022 May.
Article in English | MEDLINE | ID: covidwho-1783697

ABSTRACT

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

5.
Gene Rep ; 27: 101597, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1747987

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 is ongoing. Individuals with sarcoidosis tend to develop severe COVID-19; however, the underlying pathological mechanisms remain elusive. To determine common transcriptional signatures and pathways between sarcoidosis and COVID-19, we investigated the whole-genome transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and sarcoidosis and conducted bioinformatic analysis, including gene ontology and pathway enrichment, protein-protein interaction (PPI) network, and gene regulatory network (GRN) construction. We identified 33 abnormally expressed genes that were common between COVID-19 and sarcoidosis. Functional enrichment analysis showed that these differentially expressed genes were associated with cytokine production involved in the immune response and T cell cytokine production. We identified several hub genes from the PPI network encoded by the common genes. These hub genes have high diagnostic potential for COVID-19 and sarcoidosis and can be potential biomarkers. Moreover, GRN analysis identified important microRNAs and transcription factors that regulate the common genes. This study provides a novel characterization of the transcriptional signatures and biological processes commonly dysregulated in sarcoidosis and COVID-19 and identified several critical regulators and biomarkers. This study highlights a potential pathological association between COVID-19 and sarcoidosis, establishing a theoretical basis for future clinical trials.

6.
Meta Gene ; 31: 100990, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1482826

ABSTRACT

BACKGROUND: Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. METHODS: The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. RESULTS: Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. CONCLUSION: An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.

7.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

8.
Saudi Pharm J ; 28(9): 1138-1148, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-703998

ABSTRACT

Clinical studies have shown that renal injury in Corona Virus Disease 2019 (COVID-19) patients has been a real concern, which is associated with high mortality and an inflammation/apoptosis-related causality. Effective target therapy for renal injury has yet been developed. Besides, potential anti-COVID-19 medicines have also been reported to cause adverse side effects to kidney. Chinese Herbal Medicine (CHM), however, has rich experience in treating renal injury and has successfully applied in China in the battle of COVID-19. Nevertheless, the molecular mechanisms of CHM treatment are still unclear. In this study, we searched prescriptions in the treatment of renal injury extensively and the potential mechanisms to treat COVID-19 related renal injury were investigated. The association rules analysis showed that the core herbs includes Huang Qi, Fu Ling, Bai Zhu, Di Huang, Shan Yao. TCM herbs regulate core pathways, such as AGE-RAGE, PI3K-AKT, TNF and apoptosis pathway, etc. The ingredients (quercetin, formononetin, kaempferol, etc.,) from core herbs could modulate targets (PTGS2 (COX2), PTGS1 (COX1), IL6, CASP3, NOS2, and TNF, etc.), and thereby prevent the pharmacological and non-pharmacological renal injury comparable to that from COVID-19 infection. This study provides therapeutic potentials of CHM to combat COVID-19 related renal injury to reduce complications and mortality.

SELECTION OF CITATIONS
SEARCH DETAIL